Increasing the Value of Horticultural Crops using LEDs

Michael Dzakovich and Cary Mitchell
MS Student
Department of Horticulture and Landscape Architecture
Purdue University

First Things First

This is not photobiology...
First Things First

This is photobiology!

Photobiology Primer

- Plants perceive light with a variety of proteins
 - Photoreceptors

- Photoreceptors turned “on” or “off” by specific wavelengths of light

- Photoreceptors interact with other proteins to drive gene transcription

Photobiology Primer

- “Tricking” plants to induce flowering
 - Night Interruption
 - Shade Cloth

- Regulated by Phytochrome proteins
 - Interaction with proteins that regulate Circadian rhythm

What’s Light Got to Do with It?

- Photoreceptors mediate the production of phytochemicals:
 - Carotenoids
 - Polyphenolics
 - Glucosinolates

- Light quality can influence the emission of volatiles
 - Derived from carotenoids, amino and fatty acids
 - Consumers recognize these compounds as flavors
What’s Light Got to Do with It?

- Broccoli Microgreens:
 - 20% Blue, 80% red (250 \(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{sec}^{-1} \))
 - Highest \(\beta \)-carotene, lutein, and total carotenoids
 - Per 7g seed, yielded 72g compared to 51g (Inc/Flor.)
 - All LED treatments had significantly higher total carotenoids compared to Inc/Flor. control

Images courtesy of D.A. Kopsell
Kopsell et al., JASHS vol. 139(4): 469-477 (2014)

What’s Light Got to Do with It?

- Red Russian Kale Sprouts:
 - Anthocyanins affected by light quality and quantity
 - Glucosinolates increased from Far-Red light
 - Noticeable differences in morphology

Carvalho and Fosta, Hort. Research 1, 8(2014)
What’s Light Got to Do with It?

- Baby ‘Green Lance’ Chinese Kale:
 - LED treatments (90:10, 80:20, 40:60 Red:Blue) (250 µmol·m⁻²·sec⁻¹):
 - β-carotene and Lutein significantly higher compared to Inc/Flor control
 - Fresh and dry weight of all LED-grown plants lower than Inc/Flor control
 - Premium price for value added properties?

Image courtesy of D.A. Kopsell

What’s Light Got to Do with It?

- Baby Leaf Lettuce:
 - Flor. Light supplemented UV-A, blue, green, red, or far-red LEDs
 - Phenolics increased with red light
 - β-carotene and xanthophylls increased in blue light
 - Far-red decreased anthocyanins, carotenoids, and chlorophyll, but had highest leaf dry mass and leaf area

Image from “Johnny’s Seeds”

What’s Light Got to Do with It?

- Volatile Organic Compounds
 - Derived from carotenoids, amino, and fatty acids
 - Evidence that the aroma of petunias, tomatoes, blueberries, and strawberries can be manipulated with light (Colquhoun et al. 2013)
- LEDs could be used postharvest to enhance the flavor of high-value produce
- Lengthen shelf life?

Supplementation of fruit clusters with Ultraviolet Radiation

Intracanopy supplementation with LEDs
Supplementing with UV-B Radiation

- UV-B is a powerful elicitor of secondary metabolism
- Blocked by greenhouse glass
- Could it be the difference between the taste of a garden-grown tomato and a greenhouse grown tomato?

Intracanopy LED Lighting

- Red, Blue, and Far-Red impact secondary metabolism
 - Regulate the accumulation of carotenoids and polyphenolics
- Could we enhance the healthfulness or flavor of greenhouse tomatoes with unique light recipes?
- How will these treatments affect plant growth and development?
Analyses

- Sugars, Acids, and Vitamin C
- Polyphenolics: LC-ESI(-)-MS
- Carotenoids: UV/Vis Spectrophotometry
- Gene Expression: qRT-PCR
- Volatiles: GC-MS
- Sensory Panels

Questions?

mdzakovi@purdue.edu

Like us on Facebook at:
“The Mitchell Lab of Purdue University”